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Structure and composition of the arterial wall
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Structure and composition of the arterial wall

Elastin

= large deformations
* = elastic modulus E.,= 600 kN/m2

Collagen
= wavy fibers
‘ = elastic modulus E.,= 1000 x Eg

Smooth muscle cells
= contraction/relaxation
= negligible elasticity in passive state

Collagen

Elastin




Histology of the arterial wall
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Role of collagen in the pressure-diameter relation
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% * Mean engagement strain (Jeng) and width of PDF (Teng) are two
0 key parameters influencing collagen engagement and arterial
o mechanics
é * Analysis shows that less than 10% of collagen fibres are
O engaged in a physiological artery
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Visualization of collagen engagement under inflation

Experimental set-up:
confocal microscope
CNA35-0G488 fluorescence marker
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3.870 mm

Diameter

3.800 mm
0.645 mm

110 mmHg

Pressure

Incompressibility

Incompressible wall:
Td+2ny-Lat =t
4 4

= d*+4dh+4h* —d* =ct

= dh+h’ =ct

For thin incompressible wall (h << d):

dh = ct




Area

Compliance & Distensibility

maximum compliance

Pressure
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Compliance: C, = oA

P

Distensibility: D=2

Area compliance

Volume compliance

» Compliance is highly dependent on pressure

* For physiological pressures (60 < P < 140 mmHg),
compliance decreases when pressure increases



Compliance of the arterial system: addition of compliances
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Conclusion: The compliances of the different sections can be added to obtain total aortic compliance.



Elastance

The elastance E is the inverse of compliance C,: E =

Pressure

e
ventricle cardium
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Elasticity: stress & strain

] _F  force
Stress: O ==
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Stretch: A= T
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Elastic Modulus
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Hooke'slaw: o =F- &€

E: elastic modulus
or Young'’s elastic modulus

Material obeying Hooke’s law:
Hookean or linear elastic



Incremental elastic modulus (Einc)
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Stress and strain in absence
of prestress
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Zero Stress State (ZSS),
Opening angle, and Prestress

Arterial ring Zero Stress State:
+ E> n opened-up configuration
longitudinal cut 0

¢: opening angle

Pig aorta
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Viscoelastic effects: relaxation & creep
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Standard viscoelastic model (Kelvin)
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Hysteresis

F = G(io )u
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T (10° dyne / om®)

Preconditioning and hysteresis

Preconditioning
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Stresses acting on the arterial wall

Circumferential
/777/44 (hoop) stress g

Longitudinal

stress Oy \
E ™~ Pressure, P

radial stress
Or

_ velocity, V
T
Shear stress,




Law of Laplace (cylinder)

For g/w%'ér/'um: ;ZE = 0

_ . bcer lew
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Law of Laplace (sphere)




Average stresses




Wall Stress distribution (linear, small deformation)

U

(r) Pr; r02
, _ _o
r02 - r,2 r?
Hypotheses: - small deformations Not accurate because of
- Hookean material large deformation, nonlinearities

- incompressible wall => do not use!



Example: magnitude of hoop and shear stress acting on the aortic wall

Circumferential
/777/44 (hoop) stress g Loaplece :
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Relation between E;, . et p(r)
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Relation between E;,. et p(r)
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Pressure-diameter relationship as a function of smooth muscle tone
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Myogenic tone
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Changes in intraluminal pressure provoke an instantaneous lumen diameter extension (passive response) followed by a
smooth muscle contraction, which tends to bring diameter back to the original level. This phenomenon is termed

myogenic response



Vasomotion

A

Spontaneous oscillations in diameter of an in vitro perfused rat carotid artery (vasomotion)



Experimental setup for vasomotion studies
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Internal diameter [mm]

Vasomotion (human radial artery)
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Simultaneous ipsilateral
measurements on the radial artery
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Simultaneous contralateral radial
artery diameter measurements

Diameter [mm

3.1

3.0

29

0 200 400 600 800
Time [s]




Higher order periods

Griffith, 1994
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Routes to chaos: intermittencies




