
Arterial wall mechanics

❚ Arterial wall structure and composition 
❚ Elastic properties 
❙ Pressure-diameter relation 
❙ Incompressibility 
❙ Compliance 
❙ Elastic modulus 
❙ Viscoelasticity 

❚ Wall stress, law of Laplace 
❚ Prestress 
❚ Active properties 
❙ Smooth muscle cell contraction 
❙ Myogenic response 
❙ Vasomotion



Structure and composition of the arterial wall



Structure and composition of the arterial wall

Collagen

VSM

Elastin

 Elastin 
▪ large deformations 
▪ elastic modulus Eel= 600 kN/m2 

Collagen 
▪ wavy fibers 
▪ elastic modulus Ecol= 1000 x Eel 

Smooth muscle cells 
▪ contraction/relaxation 
▪ negligible elasticity in passive state



Histology of the arterial wall



Pressure-diameter relation
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Role of collagen in the pressure-diameter relation
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•  Statistical description of collagen engagement 

•  Mean engagement strain (µeng) and width of PDF (σeng) are two 
key parameters influencing collagen engagement and arterial 
mechanics 

•  Analysis shows that less than 10% of collagen fibres are 
engaged in a physiological artery
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Experimental set-up: 
confocal microscope 
CNA35-OG488 fluorescence marker

PCI         /material characterizationVisualization of collagen engagement under inflation



Incompressibility
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Incompressible wall:

For thin incompressible wall (h << d):
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Compliance & Distensibility
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• Compliance is highly dependent on pressure 

• For physiological pressures (60 < P < 140 mmHg), 
compliance decreases when pressure increases
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Compliance of the arterial system: addition of compliances

Conclusion: The compliances of the different sections can be added to obtain total aortic compliance. 
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Elastance

The elastance E is the inverse of compliance Cv :
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Elasticity: stress & strain
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Elastic Modulus

E
Proportional 

limit

Hooke’s law :

E: elastic modulus 
or Young’s elastic modulus  

Material obeying Hooke’s law:  
Hookean or linear elastic

σ = E ⋅ε



Incremental elastic modulus (Einc)
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Stress and strain in absence  
of prestress
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Zero Stress State (ZSS),  
Opening angle, and Prestress

Arterial ring 
+ 

longitudinal cut

Pig aorta

φ

Zero Stress State: 
opened-up configuration 

φ: opening angle 

Prestress



Viscoelastic effects: relaxation & creep

Relaxation
Creep



Standard viscoelastic model (Kelvin)
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Creep function
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Relaxation function



Hysteresis
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Preconditioning and hysteresis

Preconditioning Hysteresis



Stresses acting on the arterial wall

Circumferential 
(hoop) stress σθ

velocity, V

Longitudinal 
stress σz

Shear stress, 
τ

Pressure, P
radial stress
σr



Law of Laplace (cylinder)
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Law of Laplace (sphere)
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Average stresses
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Wall Stress distribution (linear, small deformation)
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Hypotheses: - small deformations 
  - Hookean material 
  - incompressible wall

Not accurate because of 
large deformation, nonlinearities  
=> do not use!



Example: magnitude of hoop and shear stress acting on the aortic wall

Circumferential 
(hoop) stress σθ

velocity, V

Shear stress, 
τ



Relation between Einc et p(r)



Relation between Einc et p(r)
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For a thin (h << ri) and incompressible wall: 

If the wall cannot be considered thin: 

Einc >> σ
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Pressure-diameter relationship as a function of smooth muscle tone
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Myogenic tone

Changes in intraluminal pressure provoke an instantaneous lumen diameter extension (passive response) followed by a 
smooth muscle contraction, which tends to bring diameter back to the original level. This phenomenon is termed 
myogenic response



Vasomotion

Spontaneous oscillations in diameter of an in vitro perfused rat carotid artery (vasomotion)



Experimental setup for vasomotion studies
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Vasomotion (human radial artery)



Simultaneous ipsilateral  
measurements on the radial artery
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Simultaneous contralateral radial 
artery diameter measurements 
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Higher order periods
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Routes to chaos: intermittencies

Rayleigh-Bénard model


